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Strategies for cytosolic delivery of liposomal macromolecules
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Abstract

Potential approaches to achieve cytosolic delivery of liposomal macromolecules are presented. These approaches include:
(1) the co-encapsulation of fusogenic peptides into targeted drug-containing liposomes (2) coupling of the HIV-1-derived cell-
penetrating peptide TAT to the surface of liposomes and (3) photochemical internalization, based on photochemically inducible
permeabilization of endocytic vesicles.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

Despite the potential of many macromolecules
uch as nucleic acids, proteins and peptides to serve as
herapeutic agents, the in vivo efficacy can be severely
omprised by their unfavorable physicochemical char-
cteristics. One major obstacle is the negative effect of

heir generally large size and hydrophilic nature on cel-
ular uptake. As the target site of these therapeutics is
ften located in the cytoplasm, such molecules may not
each their target without a delivery system facilitating

∗ Corresponding author. Tel.: +31 30 253 6899;
ax: +31 30 251 7839.

E-mail address:M.M.Fretz@Pharm.uu.nl (M.M. Fretz).

cytosolic delivery (Lebleu, 1996). Many different drug
delivery systems have been investigated for this
pose. Of these, liposomes have attracted conside
attention. Liposomes are able to provide protection
targeting of the encapsulated macromolecule and
facilitate cellular internalization. Currently, seve
(targeted) liposome systems are under investig
for this purpose (Simoes et al., 2001; Mandal and L
2002; Mastrobattista et al., 2002; Kakudo et al., 20).

Fig. 1 illustrates three different pathways by wh
cytosolic delivery of liposomal macromolecules m
be obtained.

Extracellular release and subsequent diffusion o
drug over the plasma membrane (Fig. 1, route 1) are
possible for molecules that are able to cross the pla
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Fig. 1. Schematic representation of potential pathways to achieve cytosolic delivery of liposomal macromolecules.

membrane. Generally, this route is, as just discussed,
not an option for macromolecules.

Cellular uptake of liposomes can occur via endo-
cytosis after which they end up in the lysosomes. In
the lysosomal compartment, the liposomes will be
subjected to the acidic environment and degrading
enzymes present there, resulting in degradation of the
liposomes including their macromolecular contents.
For that reason, utilization of mechanisms that allow
endosomal escape may provide an effective way to
achieve cytosolic delivery (Fig. 1, route 2).

The so-called cell-penetrating peptides (CPP) have
been reported to accomplish direct cytosolic delivery
when attached to various cargoes including liposomes
(Torchilin et al., 2001; Tseng et al., 2002), as illus-
trated inFig. 1, route 3. CPPs are supposed to be able
to translocate the cargo over the plasma membrane
thereby circumventing endocytosis. This results in di-
rect cytosolic delivery (Lindgren et al., 2000).

Here we present approaches studied in our labora-
tory to achieve cytosolic delivery of liposomal macro-
molecules, including co-encapsulation of fusogenic

peptides, surface coupling of CPP and photochemical
internalization.

2. Co-encapsulation of fusogenic peptides

By destabilizing the endosomal membrane, endo-
cytosed m̀aterial may be released in the cytoplasm.
This endosomal escape mechanism is, for example,
exploited by certain viruses, e.g. the influenza virus
(White, 1990). After endocytosis of the influenza viral
particle, the N-terminal domain of viral protein hemag-
glutinin subunit HA2 induces membrane destabiliza-
tion in the lysosomes. Upon acidification, this peptide
domain becomes protonated, causing a conformational
change from random coil to alpha helix (Skehel et al.,
1982; Doms et al., 1985). Due to this conformational
change, the fusion peptide is inserted into the endoso-
mal membrane and destabilizes it (Harter et al., 1989;
Stegmann et al., 1991).

Synthetic analogues of this fusion peptide have been
used in non-viral gene delivery systems to improve the

Fig. 2. Cellular uptake of TAT-liposomes was inhibited by low temperature and metabolic inhibitors. OVCAR-3 cells were incubated with TAT-
liposomes for 5 h at 37◦C (A, C, D) or at 4◦C (B). Confocal (left panel) and phase contrast (right panel) images were taken of living OVCAR-3
cells, to prevent possible fixational artifacts. (A) Control, vesicular localization of TAT-liposomes; (B) incubation at 4◦C, plasma membrane
binding of TAT-liposomes; (C) in the presence of iodoacetamide, plasma membrane binding of TAT-liposomes; (D) in the presence of cytochalasin
D, plasma membrane binding of TAT-liposomes. Figure reproduced from the publication ofFretz MM et al. (2004)with permission of the
publisher.
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transfection efficiency (Wagner, 1999; Zuidam et al.,
2000; Van Rossenberg et al., 2002).

We examined whether co-encapsulation of the in-
fluenza virus-derived synthetic diINF-7 could enhance
the cytosolic delivery of liposome-entrapped proteins.
Using circular dichroism, the pH-induced conforma-
tional change was verified. The alpha helical content
increased from 15% to 31% when the pH was low-
ered from 7.4 to 5.2. In addition, we showed that the
fusogenic behavior of the peptide was pH-dependent;
diINF-7 induced leakage of liposome-encapsulated
calcein was much more efficient at pH 5.2 than at pH
7.4. For application as a mediator of cytosolic deliv-
ery, the peptide was co-encapsulated with the catalytic
A-domain of diphtheria toxin (DTA). DTA inhibits pro-
tein synthesis when delivered in the cytoplasm, result-
ing in cell death. Liposomes targeted to the epidermal
growth factor receptor (EGFR) of tumor cells showed
cytotoxicity only when both the diINF-7 peptide and
DTA were encapsulated, whereas targeted liposomes
containing either DTA or diINF-7 did not have any cy-
totoxic effect (Mastrobattista et al., 2002).

3. Surface coupling of cell-penetrating peptides

The coupling of the so-called cell-penetrating pep-
tides (CPP) to cargoes of different sizes would enable
the cargo to directly enter the cytoplasm (Lindgren
et al., 2000). Recently, this concept was questioned
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or by cytochalasin D, only plasma membrane binding
was observed while intracellular fluorescence was
absent, as shown inFig. 2.

We concluded that TAT-peptide modified liposomes
are taken up by endocytosis rather than plasma mem-
brane translocation (Fretz et al., 2004).

4. Photochemical internalization

Recently, a novel photochemical technique, named
photochemical internalization (PCI), was developed
for inducing release of molecules from endocytic vesi-
cles (Hogset et al., 2004). In this technique, photosensi-
tizing compounds (the so-called photosensitizers) are
applied for endosomal escape. Upon illumination of
these photosensitizers, highly reactive oxygen species
are formed. Depending on their physicochemical prop-
erties, the photosensitizer can preferentially localize
in endosomal membranes. Upon illumination and for-
mation of the reactive oxygen species, the endosomal
membrane is damaged and molecules present will be
released in the cytosol. PCI has been shown to induce
endosomal release of toxins (Berg et al., 1999; Selbo et
al., 2000a, 2000b), immunotoxins (Selbo et al., 2000a,
2000b) and non-viral gene delivery systems (Berg et
al., 1999; Hogset et al., 2002) in vitro. In the near fu-
ture, we will explore the use of PCI for the cytosolic
delivery of liposomal macromolecules.
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ince redistribution of fluorescently labeled CPP
bserved in fixed cells due to the fixation proced
Lundberg and Johansson, 2002; Vives, 2003).

We studied the uptake mechanism of TAT-pep
odified liposomes in living cells. In this study, it w

lear that the coupling of TAT-peptide to the liposom
reatly enhanced the cellular binding and subseq
ptake of the liposomes. However, when the cell
istribution of fluorescent TAT-modified liposomes
xed cells was compared to the distribution in liv
ells, significant differences were observed. Ins
f a diffuse cytosolic fluorescence seen in fixed c

iving cells displayed punctuate intracellular sp
ndicating endocytosis. This was supported by
bservation that the liposomal labels co-localized w
ysotracker Red, a marker for endosomes and l
omes. In addition, when endocytosis was inhibite
owering the temperature to 4◦C, by iodoacetamid
. Conclusion

Despite the ability of targeted liposomes to in
ct specifically with certain cell types, the cytoso
elivery of the liposomal drug contents is often ine
ient, an observation which particularly holds true
acromolecular compounds like DNA and prote
fter cellular uptake via endocytosis, the liposom
ill enter the acidic lysosomal compartment in wh

he liposomes with their entrapped drugs are degra
ere we have described several approaches to im

he cytosolic delivery of therapeutic macromolecu
ntrapped in liposomes.

Co-encapsulation of the fusogenic peptide diIN
nto immunoliposomes enables the cytosolic deliv
f liposomal proteins. Although surface modificat
f liposomes with the cell-penetrating peptide TAT
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not lead to translocation of the liposome particles over
the plasma membrane, the cellular uptake via endocy-
tosis was greatly enhanced compared to non-modified
liposomes. In combination with endosomal escape
enhancers, like the diINF-7 peptide, this system could
be advantageous. Furthermore, the recent developed
technique photochemical internalization may also
prove useful for the cytosolic delivery of liposomal
macromolecules.
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